Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Europace ; 25(9)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37552789

RESUMO

AIMS: Human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have become an essential tool to study arrhythmia mechanisms. Much of the foundational work on these cells, as well as the computational models built from the resultant data, has overlooked the contribution of seal-leak current on the immature and heterogeneous phenotype that has come to define these cells. The aim of this study is to understand the effect of seal-leak current on recordings of action potential (AP) morphology. METHODS AND RESULTS: Action potentials were recorded in human iPSC-CMs using patch clamp and simulated using previously published mathematical models. Our in silico and in vitro studies demonstrate how seal-leak current depolarizes APs, substantially affecting their morphology, even with seal resistances (Rseal) above 1 GΩ. We show that compensation of this leak current is difficult due to challenges with obtaining accurate measures of Rseal during an experiment. Using simulation, we show that Rseal measures (i) change during an experiment, invalidating the use of pre-rupture values, and (ii) are polluted by the presence of transmembrane currents at every voltage. Finally, we posit that the background sodium current in baseline iPSC-CM models imitates the effects of seal-leak current and is increased to a level that masks the effects of seal-leak current on iPSC-CMs. CONCLUSION: Based on these findings, we make recommendations to improve iPSC-CM AP data acquisition, interpretation, and model-building. Taking these recommendations into account will improve our understanding of iPSC-CM physiology and the descriptive ability of models built from such data.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Potenciais de Ação , Arritmias Cardíacas , Células-Tronco
2.
Comput Methods Programs Biomed ; 240: 107690, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478675

RESUMO

BACKGROUND AND OBJECTIVE: Models of the cardiomyocyte action potential have contributed immensely to the understanding of heart function, pathophysiology, and the origin of heart rhythm disturbances. However, action potential models are highly nonlinear, making them difficult to parameterise and limiting to describing 'average cell' dynamics, when cell-specific models would be ideal to uncover inter-cell variability but are too experimentally challenging to be achieved. Here, we focus on automatically designing experimental protocols that allow us to better identify cell-specific maximum conductance values for each major current type. METHODS AND RESULTS: We developed an approach that applies optimal experimental designs to patch-clamp experiments, including both voltage-clamp and current-clamp experiments. We assessed the models calibrated to these new optimal designs by comparing them to the models calibrated to some of the commonly used designs in the literature. We showed that optimal designs are not only overall shorter in duration but also able to perform better than many of the existing experiment designs in terms of identifying model parameters and hence model predictive power. CONCLUSIONS: For cardiac cellular electrophysiology, this approach will allow researchers to define their hypothesis of the dynamics of the system and automatically design experimental protocols that will result in theoretically optimal designs.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Projetos de Pesquisa , Humanos , Arritmias Cardíacas , Potenciais de Ação/fisiologia , Miócitos Cardíacos
3.
Front Pharmacol ; 14: 1110555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021055

RESUMO

Reduction of the rapid delayed rectifier potassium current (I Kr) via drug binding to the human Ether-à-go-go-Related Gene (hERG) channel is a well recognised mechanism that can contribute to an increased risk of Torsades de Pointes. Mathematical models have been created to replicate the effects of channel blockers, such as reducing the ionic conductance of the channel. Here, we study the impact of including state-dependent drug binding in a mathematical model of hERG when translating hERG inhibition to action potential changes. We show that the difference in action potential predictions when modelling drug binding of hERG using a state-dependent model versus a conductance scaling model depends not only on the properties of the drug and whether the experiment achieves steady state, but also on the experimental protocols. Furthermore, through exploring the model parameter space, we demonstrate that the state-dependent model and the conductance scaling model generally predict different action potential prolongations and are not interchangeable, while at high binding and unbinding rates, the conductance scaling model tends to predict shorter action potential prolongations. Finally, we observe that the difference in simulated action potentials between the models is determined by the binding and unbinding rate, rather than the trapping mechanism. This study demonstrates the importance of modelling drug binding and highlights the need for improved understanding of drug trapping which can have implications for the uses in drug safety assessment.

4.
WIREs Mech Dis ; 15(1): e1581, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36028219

RESUMO

The L-type calcium current ( I CaL ) plays a critical role in cardiac electrophysiology, and models of I CaL are vital tools to predict arrhythmogenicity of drugs and mutations. Five decades of measuring and modeling I CaL have resulted in several competing theories (encoded in mathematical equations). However, the introduction of new models has not typically been accompanied by a data-driven critical comparison with previous work, so that it is unclear which model is best suited for any particular application. In this review, we describe and compare 73 published mammalian I CaL models and use simulated experiments to show that there is a large variability in their predictions, which is not substantially diminished when grouping by species or other categories. We provide model code for 60 models, list major data sources, and discuss experimental and modeling work that will be required to reduce this huge list of competing theories and ultimately develop a community consensus model of I CaL . This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Molecular and Cellular Physiology.


Assuntos
Doenças Cardiovasculares , Miócitos Cardíacos , Animais , Miócitos Cardíacos/fisiologia , Arritmias Cardíacas , Cálcio da Dieta , Mutação , Mamíferos
5.
Front Physiol ; 13: 879035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557969

RESUMO

Computational models of the electrical potential across a cell membrane are longstanding and vital tools in electrophysiology research and applications. These models describe how ionic currents, internal fluxes, and buffering interact to determine membrane voltage and form action potentials (APs). Although this relationship is usually expressed as a differential equation, previous studies have shown it can be rewritten in an algebraic form, allowing direct calculation of membrane voltage. Rewriting in this form requires the introduction of a new parameter, called Γ0 in this manuscript, which represents the net concentration of all charges that influence membrane voltage but are not considered in the model. Although several studies have examined the impact of Γ0 on long-term stability and drift in model predictions, there has been little examination of its effects on model predictions, particularly when a model is refit to new data. In this study, we illustrate how Γ0 affects important physiological properties such as action potential duration restitution, and examine the effects of (in)correctly specifying Γ0 during model calibration. We show that, although physiologically plausible, the range of concentrations used in popular models leads to orders of magnitude differences in Γ0, which can lead to very different model predictions. In model calibration, we find that using an incorrect value of Γ0 can lead to biased estimates of the inferred parameters, but that the predictive power of these models can be restored by fitting Γ0 as a separate parameter. These results show the value of making Γ0 explicit in model formulations, as it forces modellers and experimenters to consider the effects of uncertainty and potential discrepancy in initial concentrations upon model predictions.

6.
Front Physiol ; 12: 651162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122128

RESUMO

Although plasma electrolyte levels are quickly and precisely regulated in the mammalian cardiovascular system, even small transient changes in K+, Na+, Ca2+, and/or Mg2+ can significantly alter physiological responses in the heart, blood vessels, and intrinsic (intracardiac) autonomic nervous system. We have used mathematical models of the human atrial action potential (AP) to explore the electrophysiological mechanisms that underlie changes in resting potential (Vr) and the AP following decreases in plasma K+, [K+]o, that were selected to mimic clinical hypokalemia. Such changes may be associated with arrhythmias and are commonly encountered in patients (i) in therapy for hypertension and heart failure; (ii) undergoing renal dialysis; (iii) with any disease with acid-base imbalance; or (iv) post-operatively. Our study emphasizes clinically-relevant hypokalemic conditions, corresponding to [K+]o reductions of approximately 1.5 mM from the normal value of 4 to 4.5 mM. We show how the resulting electrophysiological responses in human atrial myocytes progress within two distinct time frames: (i) Immediately after [K+]o is reduced, the K+-sensing mechanism of the background inward rectifier current (IK1) responds. Specifically, its highly non-linear current-voltage relationship changes significantly as judged by the voltage dependence of its region of outward current. This rapidly alters, and sometimes even depolarizes, Vr and can also markedly prolong the final repolarization phase of the AP, thus modulating excitability and refractoriness. (ii) A second much slower electrophysiological response (developing 5-10 minutes after [K+]o is reduced) results from alterations in the intracellular electrolyte balance. A progressive shift in intracellular [Na+]i causes a change in the outward electrogenic current generated by the Na+/K+ pump, thereby modifying Vr and AP repolarization and changing the human atrial electrophysiological substrate. In this study, these two effects were investigated quantitatively, using seven published models of the human atrial AP. This highlighted the important role of IK1 rectification when analyzing both the mechanisms by which [K+]o regulates Vr and how the AP waveform may contribute to "trigger" mechanisms within the proarrhythmic substrate. Our simulations complement and extend previous studies aimed at understanding key factors by which decreases in [K+]o can produce effects that are known to promote atrial arrhythmias in human hearts.

7.
Wellcome Open Res ; 6: 261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35299708

RESUMO

Hundreds of different mathematical models have been proposed for describing electrophysiology of various cell types. These models are quite complex (nonlinear systems of typically tens of ODEs and sometimes hundreds of parameters) and software packages such as the Cancer, Heart and Soft Tissue Environment (Chaste) C++ library have been designed to run simulations with these models in isolation or coupled to form a tissue simulation. The complexity of many of these models makes sharing and translating them to new simulation environments difficult. CellML is an XML format that offers a widely-adopted solution to this problem. This paper specifically describes the capabilities of two new Python tools: the cellmlmanip library for reading and manipulating CellML models; and chaste_codegen, a CellML to C++ converter. These tools provide a Python 3 replacement for a previous Python 2 tool (called PyCML) and they also provide additional new features that this paper describes. Most notably, they can generate analytic Jacobians without the use of proprietary software, and also find singularities occurring in equations and automatically generate and apply linear approximations to prevent numerical problems at these points.

8.
J Integr Bioinform ; 17(2-3)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32759406

RESUMO

We present here CellML 2.0, an XML-based language for describing and exchanging mathematical models of physiological systems. MathML embedded in CellML documents is used to define the underlying mathematics of models. Models consist of a network of reusable components, each with variables and equations giving relationships between those variables. Models may import other models to create systems of increasing complexity. CellML 2.0 is defined by the normative specification presented here, prescribing the CellML syntax and the rules by which it should be used. The normative specification is intended primarily for the developers of software tools which directly consume CellML syntax. Users of CellML models may prefer to browse the informative rendering of the specification (https://cellml.org/specifications/cellml_2.0/) which extends the normative specification with explanations of the rules combined with examples of their usage.


Assuntos
Modelos Biológicos , Software , Simulação por Computador , Modelos Teóricos
9.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190348, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448060

RESUMO

Mathematical models of ion channels, which constitute indispensable components of action potential models, are commonly constructed by fitting to whole-cell patch-clamp data. In a previous study, we fitted cell-specific models to hERG1a (Kv11.1) recordings simultaneously measured using an automated high-throughput system, and studied cell-cell variability by inspecting the resulting model parameters. However, the origin of the observed variability was not identified. Here, we study the source of variability by constructing a model that describes not just ion current dynamics, but the entire voltage-clamp experiment. The experimental artefact components of the model include: series resistance, membrane and pipette capacitance, voltage offsets, imperfect compensations made by the amplifier for these phenomena, and leak current. In this model, variability in the observations can be explained by either cell properties, measurement artefacts, or both. Remarkably, by assuming that variability arises exclusively from measurement artefacts, it is possible to explain a larger amount of the observed variability than when assuming cell-specific ion current kinetics. This assumption also leads to a smaller number of model parameters. This result suggests that most of the observed variability in patch-clamp data measured under the same conditions is caused by experimental artefacts, and hence can be compensated for in post-processing by using our model for the patch-clamp experiment. This study has implications for the question of the extent to which cell-cell variability in ion channel kinetics exists, and opens up routes for better correction of artefacts in patch-clamp data. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.

10.
Wiley Interdiscip Rev Syst Biol Med ; 12(4): e1482, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32084308

RESUMO

Cardiac electrophysiology models are among the most mature and well-studied mathematical models of biological systems. This maturity is bringing new challenges as models are being used increasingly to make quantitative rather than qualitative predictions. As such, calibrating the parameters within ion current and action potential (AP) models to experimental data sets is a crucial step in constructing a predictive model. This review highlights some of the fundamental concepts in cardiac model calibration and is intended to be readily understood by computational and mathematical modelers working in other fields of biology. We discuss the classic and latest approaches to calibration in the electrophysiology field, at both the ion channel and cellular AP scales. We end with a discussion of the many challenges that work to date has raised and the need for reproducible descriptions of the calibration process to enable models to be recalibrated to new data sets and built upon for new studies. This article is categorized under: Analytical and Computational Methods > Computational Methods Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.


Assuntos
Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Animais , Humanos , Canais Iônicos/metabolismo , Ligantes , Cadeias de Markov
11.
Wellcome Open Res ; 5: 152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34805549

RESUMO

Automated patch-clamp platforms are widely used and vital tools in both academia and industry to enable high-throughput studies such as drug screening. A leak current to ground occurs whenever the seal between a pipette and cell (or internal solution and cell in high-throughput machines) is not perfectly insulated from the bath (extracellular) solution. Over 1 GΩ seal resistance between pipette and bath solutions is commonly used as a quality standard for manual patch work. With automated platforms it can be difficult to obtain such a high seal resistance between the intra- and extra-cellular solutions. One suggested method to alleviate this problem is using an F - containing internal solution together with a Ca 2+ containing external solution - so that a CaF 2 crystal forms when the two solutions meet which 'plugs the holes' to enhance the seal resistance. However, we observed an unexpected nonlinear-in-voltage and time-dependent current using these solutions on an automated patch-clamp platform. We performed manual patch-clamp experiments with the automated patch-clamp solutions, but no biological cell, and observed the same nonlinear time-dependent leak current. The current could be completely removed by washing out F - ions to leave a conventional leak current that was linear and not time-dependent. We therefore conclude fluoride ions interacting with the CaF 2 crystal are the origin of the nonlinear time-dependent leak current. The consequences of such a nonlinear and time-dependent leak current polluting measurements should be considered carefully if it cannot be isolated and subtracted.

12.
Pharmacol Res ; 148: 104444, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31493513

RESUMO

Cardiac arrhythmias are a global health burden, contributing significantly to morbidity and mortality worldwide. Despite technological advances in catheter ablation therapy, antiarrhythmic drugs (AADs) remain a cornerstone for the management of cardiac arrhythmias. Experimental and translational studies have shown that commonly used AADs exert multiple effects in the heart, the manifestation of which strongly depends on the exact experimental or clinical conditions. This diversity makes the optimal clinical application of AADs challenging. Here, we present a novel computational tool designed to facilitate a better understanding of the complex mechanisms of action of AADs (the Maastricht Antiarrhythmic Drug Evaluator, MANTA). In this tool, we integrated published computational cardiomyocyte models from different species (mouse, guinea pig, rabbit, dog, and human), regions (atrial, ventricular, and Purkinje cells) and disease conditions (atrial fibrillation- and heart failure-related remodeling). Subsequently, we investigated the effects of clinically available AADs (Vaughan-Williams Classes I, III, IV and multi-channel blockers) on action potential (AP) properties and the occurrence of proarrhythmic effects such as early afterdepolarizations. Steady-state drug effects were simulated based on a newly compiled overview of published IC50 values for each cardiac ion channel and by integrating state-dependent block of the cardiac Na+-current by Class I AADs using a Markov-model approach. Using MANTA, we demonstrated and characterized important species-, rate-, cell-type-, and disease-state-specific AAD effects, including 1) a stronger effect of Class III AADs in large mammals than in rodents; 2) a rate-dependent decrease in upstroke velocity with Class I AADs and reverse rate-dependent effects of Class III AADs on action potential duration; 3) ventricular-predominant effects of pure IKr blockers; 4) preferential reduction in atrial AP upstroke velocity with vernakalant; and 5) excessive AP prolongation with Class III AADs other than amiodarone under heart failure conditions. In conclusion, the effects of AADs are highly complex and strongly dependent on the experimental or clinical conditions. MANTA is a powerful and freely available tool reproducing a wide range of AAD characteristics that enables analyses of the underlying ionic mechanisms. Use of MANTA is expected to improve our understanding of AAD effects on cellular electrophysiology under a wide range of conditions, which may provide clinically-relevant information on the safety and efficacy of AAD treatment.


Assuntos
Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Potenciais de Ação/efeitos dos fármacos , Animais , Cães , Cobaias , Átrios do Coração/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Ventrículos do Coração/efeitos dos fármacos , Humanos , Camundongos , Coelhos
13.
Biophys J ; 117(12): 2420-2437, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31493859

RESUMO

Mathematical models of ionic currents are used to study the electrophysiology of the heart, brain, gut, and several other organs. Increasingly, these models are being used predictively in the clinic, for example, to predict the risks and results of genetic mutations, pharmacological treatments, or surgical procedures. These safety-critical applications depend on accurate characterization of the underlying ionic currents. Four different methods can be found in the literature to fit voltage-sensitive ion channel models to whole-cell current measurements: method 1, fitting model equations directly to time-constant, steady-state, and I-V summary curves; method 2, fitting by comparing simulated versions of these summary curves to their experimental counterparts; method 3, fitting to the current traces themselves from a range of protocols; and method 4, fitting to a single current trace from a short and rapidly fluctuating voltage-clamp protocol. We compare these methods using a set of experiments in which hERG1a current was measured in nine Chinese hamster ovary cells. In each cell, the same sequence of fitting protocols was applied, as well as an independent validation protocol. We show that methods 3 and 4 provide the best predictions on the independent validation set and that short, rapidly fluctuating protocols like that used in method 4 can replace much longer conventional protocols without loss of predictive ability. Although data for method 2 are most readily available from the literature, we find it performs poorly compared to methods 3 and 4 both in accuracy of predictions and computational efficiency. Our results demonstrate how novel experimental and computational approaches can improve the quality of model predictions in safety-critical applications.


Assuntos
Fenômenos Eletrofisiológicos , Canais Iônicos/metabolismo , Modelos Biológicos , Algoritmos , Humanos , Software
14.
Biophys J ; 117(12): 2438-2454, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31447109

RESUMO

Predicting how pharmaceuticals may affect heart rhythm is a crucial step in drug development and requires a deep understanding of a compound's action on ion channels. In vitro hERG channel current recordings are an important step in evaluating the proarrhythmic potential of small molecules and are now routinely performed using automated high-throughput patch-clamp platforms. These machines can execute traditional voltage-clamp protocols aimed at specific gating processes, but the array of protocols needed to fully characterize a current is typically too long to be applied in a single cell. Shorter high-information protocols have recently been introduced that have this capability, but they are not typically compatible with high-throughput platforms. We present a new 15 second protocol to characterize hERG (Kv11.1) kinetics, suitable for both manual and high-throughput systems. We demonstrate its use on the Nanion SyncroPatch 384PE, a 384-well automated patch-clamp platform, by applying it to Chinese hamster ovary cells stably expressing hERG1a. From these recordings, we construct 124 cell-specific variants/parameterizations of a hERG model at 25°C. A further eight independent protocols are run in each cell and are used to validate the model predictions. We then combine the experimental recordings using a hierarchical Bayesian model, which we use to quantify the uncertainty in the model parameters, and their variability from cell-to-cell; we use this model to suggest reasons for the variability. This study demonstrates a robust method to measure and quantify uncertainty and shows that it is possible and practical to use high-throughput systems to capture full hERG channel kinetics quantitatively and rapidly.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Animais , Automação , Teorema de Bayes , Células CHO , Cricetulus , Humanos , Cinética , Análise de Célula Única
15.
Biophys J ; 117(12): 2455-2470, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31451180

RESUMO

Ion channel behavior can depend strongly on temperature, with faster kinetics at physiological temperatures leading to considerable changes in currents relative to room temperature. These temperature-dependent changes in voltage-dependent ion channel kinetics (rates of opening, closing, inactivating, and recovery) are commonly represented with Q10 coefficients or an Eyring relationship. In this article, we assess the validity of these representations by characterizing channel kinetics at multiple temperatures. We focus on the human Ether-à-go-go-Related Gene (hERG) channel, which is important in drug safety assessment and commonly screened at room temperature so that results require extrapolation to physiological temperature. In Part I of this study, we established a reliable method for high-throughput characterization of hERG1a (Kv11.1) kinetics, using a 15-second information-rich optimized protocol. In this Part II, we use this protocol to study the temperature dependence of hERG kinetics using Chinese hamster ovary cells overexpressing hERG1a on the Nanion SyncroPatch 384PE, a 384-well automated patch-clamp platform, with temperature control. We characterize the temperature dependence of hERG gating by fitting the parameters of a mathematical model of hERG kinetics to data obtained at five distinct temperatures between 25 and 37°C and validate the models using different protocols. Our models reveal that activation is far more temperature sensitive than inactivation, and we observe that the temperature dependency of the kinetic parameters is not represented well by Q10 coefficients; it broadly follows a generalized, but not the standardly-used, Eyring relationship. We also demonstrate that experimental estimations of Q10 coefficients are protocol dependent. Our results show that a direct fit using our 15-s protocol best represents hERG kinetics at any given temperature and suggests that using the Generalized Eyring theory is preferable if no experimental data are available to derive model parameters at a given temperature.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Modelos Biológicos , Temperatura , Animais , Células CHO , Cricetulus , Humanos , Cinética
16.
Sci Rep ; 8(1): 12797, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143662

RESUMO

Mutations in SCN5A can alter the cardiac sodium current INa and increase the risk of potentially lethal conditions such as Brugada and long-QT syndromes. The relation between mutations and their clinical phenotypes is complex, and systems to predict clinical severity of unclassified SCN5A variants perform poorly. We investigated if instead we could predict changes to INa, leaving the link from INa to clinical phenotype for mechanistic simulation studies. An exhaustive list of nonsynonymous missense mutations and resulting changes to INa was compiled. We then applied machine-learning methods to this dataset, and found that changes to INa could be predicted with higher sensitivity and specificity than most existing predictors of clinical significance. The substituted residues' location on the protein correlated with channel function and strongly contributed to predictions, while conservedness and physico-chemical properties did not. However, predictions were not sufficiently accurate to form a basis for mechanistic studies. These results show that changes to INa, the mechanism through which SCN5A mutations create cardiac risk, are already difficult to predict using purely in-silico methods. This partly explains the limited success of systems to predict clinical significance of SCN5A variants, and underscores the need for functional studies of INa in risk assessment.


Assuntos
Ativação do Canal Iônico/genética , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canais de Sódio/metabolismo , Sequência de Aminoácidos , Humanos , Aprendizado de Máquina , Canal de Sódio Disparado por Voltagem NAV1.5/química , Curva ROC
17.
Prog Biophys Mol Biol ; 139: 3-14, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29842853

RESUMO

The modelling of the electrophysiology of cardiac cells is one of the most mature areas of systems biology. This extended concentration of research effort brings with it new challenges, foremost among which is that of choosing which of these models is most suitable for addressing a particular scientific question. In a previous paper, we presented our initial work in developing an online resource for the characterisation and comparison of electrophysiological cell models in a wide range of experimental scenarios. In that work, we described how we had developed a novel protocol language that allowed us to separate the details of the mathematical model (the majority of cardiac cell models take the form of ordinary differential equations) from the experimental protocol being simulated. We developed a fully-open online repository (which we termed the Cardiac Electrophysiology Web Lab) which allows users to store and compare the results of applying the same experimental protocol to competing models. In the current paper we describe the most recent and planned extensions of this work, focused on supporting the process of model building from experimental data. We outline the necessary work to develop a machine-readable language to describe the process of inferring parameters from wet lab datasets, and illustrate our approach through a detailed example of fitting a model of the hERG channel using experimental data. We conclude by discussing the future challenges in making further progress in this domain towards our goal of facilitating a fully reproducible approach to the development of cardiac cell models.


Assuntos
Fenômenos Eletrofisiológicos , Coração/fisiologia , Internet , Modelos Cardiovasculares , Interface Usuário-Computador
18.
Front Physiol ; 8: 986, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311950

RESUMO

Human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) have applications in disease modeling, cell therapy, drug screening and personalized medicine. Computational models can be used to interpret experimental findings in iPSC-CMs, provide mechanistic insights, and translate these findings to adult cardiomyocyte (CM) electrophysiology. However, different cell lines display different expression of ion channels, pumps and receptors, and show differences in electrophysiology. In this exploratory study, we use a mathematical model based on iPSC-CMs from Cellular Dynamic International (CDI, iCell), and compare its predictions to novel experimental recordings made with the Axiogenesis Cor.4U line. We show that tailoring this model to the specific cell line, even using limited data and a relatively simple approach, leads to improved predictions of baseline behavior and response to drugs. This demonstrates the need and the feasibility to tailor models to individual cell lines, although a more refined approach will be needed to characterize individual currents, address differences in ion current kinetics, and further improve these results.

19.
Med Biol Eng Comput ; 55(8): 1353-1365, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27873155

RESUMO

The inverse problem of electrocardiography aims at noninvasively reconstructing electrical activity of the heart from recorded body-surface electrocardiograms. A crucial step is regularization, which deals with ill-posedness of the problem by imposing constraints on the possible solutions. We developed a regularization method that includes electrophysiological input. Body-surface potentials are recorded and a computed tomography scan is performed to obtain the torso-heart geometry. Propagating waveforms originating from several positions at the heart are simulated and used to generate a set of basis vectors representing spatial distributions of potentials on the heart surface. The real heart-surface potentials are then reconstructed from the recorded body-surface potentials by finding a sparse representation in terms of this basis. This method, which we named 'physiology-based regularization' (PBR), was compared to traditional Tikhonov regularization and validated using in vivo recordings in dogs. PBR recovered details of heart-surface electrograms that were lost with traditional regularization, attained higher correlation coefficients and led to improved estimation of recovery times. The best results were obtained by including approximate knowledge about the beat origin in the PBR basis.


Assuntos
Potenciais de Ação/fisiologia , Mapeamento Potencial de Superfície Corporal/métodos , Diagnóstico por Computador/métodos , Eletrocardiografia/métodos , Sistema de Condução Cardíaco/fisiologia , Modelos Cardiovasculares , Algoritmos , Animais , Simulação por Computador , Cães , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Prog Biophys Mol Biol ; 120(1-3): 100-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26721671

RESUMO

Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular action potential to find that current tools do not cater specifically to model development and that there is a gap between easy-to-use but limited software and powerful tools that require strong programming skills from their users. We then describe Myokit's capabilities, focusing on its model description language, simulation engines and import/export facilities in detail. Using three examples, we show how Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap between performance, versatility and user-friendliness.


Assuntos
Fenômenos Eletrofisiológicos , Coração/fisiologia , Modelos Cardiovasculares , Miocárdio/citologia , Software , Interface Usuário-Computador , Potenciais de Ação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...